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Multiscaling and information content of natural color images
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Naive scale invariance is not a true property of natural images. Natural monochrome images possess a much
richer geometrical structure, which is particularly well described in terms of multiscaling relations. This means
that the pixels of a given image can be decomposed into sets, the fractal components of the image, with
well-defined scaling exponenfJuriel and Parga, Neural Comput2, 763 (2000]. Here it is shown that
hyperspectral representations of natural scenes also exhibit multiscaling properties, observing the same kind of
behavior. A precise measure of the informational relevance of the fractal components is also given, and it is
shown that there are important differences between the intrinsically redundant red-green-blue system and the
decorrelated one defined in Ruderman, Cronin, and Jlia®pt. Soc. Am. Al5, 2036(1998].

PACS numbdps): 42.66.Ne, 87.19.Dd, 47.58n, 47.54+r

I. INTRODUCTION of the statistics of images should be achieved to define what
The description of the early stages of the visual pathway natural scene is. This implies the necessity of looking for
in mammalians and other animals must be addressed fromore regularities. As it was noticed [d2,14], there is fur-
the knowledge of the properties of the signal that this systenther structure that can be detected in the statistics of a quan-
is intended to encode: natural imadés-4]. These are very tity related to local changes in contrast. The study of its
complex objects, and truly random from the point of view of properties revealed the existence of multiscaling properties
the observer. However, natural images are structured, highlyn natural scenes: images do not have uniform scale proper-
redundant objects, a fact that becomes clear, for instancéges, but they can be decomposed in sets of piketctals)
when the luminosity changes smoothly over the reflectingsuch that only those in a given set have similar scale prop-
surfaces. This redundancy, which should be usea @sori  erties. The scaling properties associated with the power spec-
knowledge about the signal, is useful to develop optimakrum are usually related to the fractal character of images.
coding strategies, which are learned by the sensory systenThe new scaling laws observed in monochrome natural im-
Finding structure in natural scenes is not a trivial problemages refer to a more detailed structure that reveals that im-
and the description of the relevant regularities requires firsages are not simple fractaffor this notion see, e.g[15])
of all to define the variables where these regularities manifesjut rather multifractal objectéa mathematical concept that
themselves. One such variable is the contrast, and the analyras introduced if16]) which can be split into different frac-
sis of its second-order statistifs,6] reveals that there is no tal sets that transform differently under changes in the scale.
characteristic scale in the proble@]. Following this fact, The hierarchical structure of the fractal components has been
several author3,4,7,9 have described natural image statis- proposed as a natural way of classifying the information con-
tics in terms of a Gaussian with af#/power spectrum. This  tent of the visual scend43]. Image structure in scale-space
was then used to predict the receptive fields of cells in théhas been considered by several authors, although from a dif-
early visual system. However, it is clear that a Gaussian steferent point of view{17,18.
tistics leaves aside a large amount of qualitatively important Interestingly enough, these properties can be explained
structure. This is noticed, for instance, in that once the imagg14,12 by means of a simple model, which obtains the sta-
is whitened(i.e., the correlations between pairs of pixels aretistics of the contrast gradient at a scalén terms of an
eliminated, the scene can still be recognized thanks to théndependent multiplicative process applied to the statistics of
fact that the borders of the objects are still pred&mt An-  the contrast gradient at a larger schleThis multiplicative
other piece of evidence against the Gaussian statistics is thgochastic variable follows a log-Poisson distribution. The
presence of long tails in the contrast distribut{d®,11. events it generates give a statistical description of the way
As it was emphasized ifl1-13, a better understanding that contrast differences present at the stadee seen at the
finer scale. In particular, a sharp changeodulation) of the
contrast gradient is represented in terms of a larger intensity
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The power of the statistical regularities of images detectednain conclusions are presented in Sec. VII.
with these techniques can be appreciated in that they are
enough to predict an intrinsic wavelet filter in natural scenes Il. METHODS

[20] In faCt, the non-Gaussian statistics Implled by the |Og— The data-gathering methods were agzm] Brieﬂy, spec-
Poisson process uniquely define a wavelet filter that decomral images were captured using an Electrim EDC-1000TE
poses the image in a set of statistically independent resolwzamera with a resolution of 192165 (horizontal X vertical

tion levels, and although it still leaves some spatialeight-bit pixels. Light reaching the CCD array was passed
dependences, these are extremely short-raf@@dThis has  through a variable interference filter with a wavelength range
to be contrasted with the ambiguities that the use of only th@f 400—740 nm of bandpass typically 15 nm. In each image,
power spectrum still leaves in the definition of an optimal43 successive images were taken of each scene at 7—8 nm
filter [3]. intervals from 403 to 719 nm. Each pixel subtended a rect-

It is then relevant to ask whether similar non-Gaussiarf"9!€ Of 0.04%0.055 degreeghorizontal X vertica). No
statistics is also present in color images. In this case, howgCITections for optical or CCD-element spatial filtering were
ever, one is faced not only with the types of geometricalmade’ however, the estimated dark noise was subtracted
redundancy mentioned above for monochrome imagefrorn each CCD Image on a p'lxel—by'-plxel basls. In attempt-
[5,6,12, but also with chromatic redundangy,21]. The in- ﬁ1g to select a diversity of typical foliage-dominated scenes,

- . X ; images were collected in several locations around Baltimore,
formation conveyed by color images is obviously very ré-;arviang (temperate woodlandand Brisbane, Australia

dundant, particularly for those spectral channels with the{sclerophyll forest, subtropical rainforest, and mangrove
closest wavelengths. One expects that each channel behawggamp. Selected scenes contained numerous natural ob-
statistically much like a single monochrome channel, withjects, including leaf foliage, bark, rocks, herbs, streams, bare
similar geometrical redundancies and strong mutual deperkoil, etc. In one corner of each imaged scene small reflec-
dences. Taking as a starting point the usual three-channgince standards were placed for calibration purposes: a Spec-
red-green-blu¢RGB) representatiorithat we will hereafter tralon 100% diffuse reflectance materi@labspherg and a
call thechromatic systerRGB) according to the human sen- nominally 3% spectrally flat diffuse reflectéMacBeth.
sory receptor classes, Rudern&tral.[21] developed a chro- We collected images of 12 such natural scenes, and fur-
matic system of three new variablésalled |«B). As de- ther analyzed the central 12828 pixel region. Each of the
fined, this chromatic system decorrelates the three signals §128x 128x 12=196 608) pixels was converted to three the-
each point in the image. Thus, these signals define a moweretical cone responses 2§Q(N)R(N)I(N), whereQ(\) is
compact codification of the RGB images. Moreover, thethe Stockman-MaclLeod-Johnson cone fundamei22j for
variables these authors obtain are reminiscent of the chrdhe given cone typeR(\) is the measured image reflectance
matic channels of human color vision. data,l (\) is the standard illuminant D6&vhich is meant to

The aim of this work is to explain the chromatic systemsmimic a daylight spectruni22,23), and the sum is over
both from the geometrical meaning of the fractal component¥vavelengths represented in the spectrum. Our results depend
of color images and from the evaluation of the informationonly very weakly on the choice of illuminant, so long as it is
conveyed by each chromatic channel over the fractal compdiroadband. This procedure provides the cone response data
nents. We will present the following. L(x), M(x), andS(x), proportional to the number of quanta

(i) Verification of the log-Poisson multiplicative process absorbed in ak, M, or Scone at spatial locatiox within the
for each channel of the two chromatic systeftimt is, the  jmage. The raw reflectance data for the 12 images are avail-
standard red-green-blue and the decorrelating dme8Y]  able via anonymous ftp at ftp://sloan.salk.edu/pub/ruderman/
[21]. _ N ~ hyperspectrall.

(it) Performance of a multifractal decomposition of im- e will make use of two differenthromatic systemsf
ages for the two chromatic systems and a classification of theone response variables to represent each image, the RGB
resulting fractal components, emphasizing the importanceystem and théa8 system. The RGB system is formed by
and the interpretation of the most relevant of them, the mosghe rawL (red), M (green, and S (blue) responses and is
singular manifold MSM). intended to be an unprocessed representation of the image.

(iii) Determination of the information content and the mu-The| o8 system is formed by the variables obtainedaa],
tual information among the three components of a givenyhich is defined as follows:

chromatic system, for different sets of pixéishole image,
MSM, and second MSM
The paper is structured as follows. In Sec. Il the instru- I= ﬁ(m L+InM+InS)—l,,
mental and processing methods used in the elaboration of
this work are summarized. The concepts of multiscaling laws 1
and their experimental validations are given in Sec. lll. Sec- a=—(nL+INnM—2InS)—ay, (1)
tion 1V explains the log-Poisson model which is used to NG
describe the non-Gaussian image statistics. In Sec. V our
statistical results are interpreted in geometrical terms, and the
decomposition of the images into their fractal components is B= E(In L=InM)—Bo,
shown. In addition, the differences between the two chro-
matic systems are also observed and explained. In Sec. Vlwherel, aq, andB, are appropriate constants verifying that
precise measure of the information content and mutual inforthe average of each variable over each image is equal to zero.
mation of the variables are given and interpreted. Finally, th&hese variables are decorrelated, that is, the average of the
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product of any two different variables vanisheee[21]).  where «, is a geometrical factor. The angular brackets

This decorrelation property is a weak kind of independenC? .. > represent the average over all the po'p-ntm|onging to
(if the variables are independent, then they are decorrelatedeach image for all the images in the ensemble considered.
Since, is an arbitrary function of, this is a more general
Il. STATISTICS OF IMAGES: MULTISCALING type of scaling than the one observed in the power spectrum.
The simplest possible system exhibiting SS is that in which
It is believed that natural images behave like “fractal” TpOC p. In that case, the dependence on the scale parameter
objects: they do not possess a scale of reference and they g&etrivial: it simply implies that the moments of the normal-
self-similar[6], each small portion of them behaving in the jzed variablee, /(¢,) do not depend on. The most interest-
same way as the whole imagi a statistical sengeHow-  ing cases are those in which#7;p, and this deviation is
ever, the kind of self-similar behavior shown by the powerknown asanomalous scaling
the local structure of natural scerfd9—13. This is because \eaker identity:
it assigns the same scaling exponent to every image pixel. To
obtain a better description of the image, it is necessary to
define a variable with a local scope, able to detect its local
features. The hope is that a variable like this could assign
distinct self-similar behaviors to different pixels, which in Any moment of ordeq could be usedprovidedr,# 0 if SS
turn could be used to detect and classify its local featuredolds; we will always use the moment=2. If €, has SS, it
Examples of this approach can be foundi2,13,19, where  also has ESS, and the relation between the expongraad
dealing with gray-scale images a whole hierarchy of imagee(P,2) is
features, from sharp edges to textures, has been put in cor-
respondence with local scaling exponents. o
In this work the approach is extended to color images. p(p,2)= g (6)
The existence of a hierarchy is explored and explicitly 2
checked for all the components of the chromatic systems .
presented in the preceding section. In analogy with the variwe can now verify if SS and ESS .hOId for color-na_tural
ables defined ifi12,13, given any of the chromatic compo- images using the dataset presented in Sec. Il. For this pur-

nents presented in Sec. II, telge contentEC) of this com-  POse we have used the variable$x) [Eq. (3)] takingr in -
ponent at the poinf and at the scale, Er()z), is defined as both the horizontal and the vertical directions. The numerical

analysis was done over the six EC variables built on the six
1 chromatic components RGB ahd . The scala was taken
)= — dx'[VC|(x'), 2 small compared with the total S|ze_of the image=(64 pix-
& () r2Je,x Vel @ els) andp was taken up t@=10. It is remarkable that both
SS and ESS hold for all of these cases. The test for ESS is
- . presented for the horizontal EC of the chromatic components
whereC(x) denotes the selle(_:ted Ch“’ma!“c compor{erg., RGB in Fig. 1 and for the chromatic componeh4s3 in Fig.
R, G, B,l, @, or B). The bidimensional integral is defined R .
- i i , 2. The ESS exponenigp,2) are shown in Fig. 3, again for
over B,(x), which represents a square of linear sizeen- e three components of the two chromatic systems.
tered atx. We will often use one-dimensional surrogates of ~ The exponentsr, do not behave linearly wittp. This
the EC, which are statistically less demanding. These arproves that natural scenes possess nontrivial scaling laws,
defined as integrals along a direction given by a vectof ~ and that more complex regularities are present in the image
lengthr: ensemble. The next section describes a model that predicts
the correct exponents and consequently contains those regu-
1 (ri2 larities. After that, the statistical approach followed here will
€(X)=— f ds
rJ-rr

(eP)y=A(p,q)( P, (5)

.r
X+Ss—
.

aC

> ) ©) be related with a local approach, this will allow us to predict
s

geometrical properties of natural images from the knowledge
of 7.
As noted before, these variables compute the average over a ’
scaler of a quantity that compares two neighboring points. It
is then clear that even its marginal distribution contains in-
formation about the local structure of the image. This is not
the case for the more usual average over the same scale of The data presented in the preceding section show that
the chromatic components themselves. ESS holds for the six chromatic components discussed in this
We now introduce the important concepts eElf-  work. We show here that a very simple model, based on a
similarity (SS andextended self-similarityeSS (see[12]).  |og-Poissonmultiplicative proces$24—26,12, is able to fit
Given a random variable, defined on a local area of size  these data. The existence of such a process means that the
we would say that this variable has SS if its statistical mo-EC at a scale is obtained from the EC at a greater schle
ments of ordep obey a power law with exponent,: by multiplying it by a random variabler,, :

IV. MULTIPLICATIVE PROCESSES: LOG-POISSON
MODEL

(eP)=apr™, 4 €=a €, )
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FIG. 1. Verification of ESS for the third- and fourth-order moments of the horizontal EC in the RGB chromatic $g&temands, red;
crosses, green; boxes, blughe best linear fits are also represented. Each data point corresponds to a fixed vafueno# to 64 pixels.
Although not shown here, the vertical EC gives an equally good fit.

where «, is independent ok, . The random factorsy, event corresponds to smooth transitions in the conteagt,
define the multiplicative process, and for any intermediatedhe surface of an objegtwhereas the infinitesimally rare

scaler’, r<r’<L, the following relation must hold: event indicates a sharp transiti¢gg., anedge. The sharp-
ness of the transition is observed as a finite change of the
QL= g . (8)  value ofa,_ under an infinitesimal change in the scajeve

o o o will characterize this finite change by means of a modulation
This implies that the process can be infinitely split into manyparameter, & 8<1, which measures the fraction of the

intermediate stages, and it is thus said to be infinitely divisyg)ye of a,, which remains after that transition. More pre-
ible. The factora, takes account of the consecutive transi—cise|y, thea,,’s are obtained by

tions of the EC from a large scale in the image to smaller
ones. Knowing the process and the probability distribution of

the EC at the largest scale the probability distribution of dr _ 3 dr
the EC at any other scate<L can be computed. 1+A ra with probability 1-[d— Dx]T
Under an infinitesimal change in the scé@hen the EC X pidr= g
at scaler is generated from the EC at scale-dr), the ' ar . . _ ar
log-Poisson model is a binomial distribution with one event B( 1+A r ) with probability[d -~ D..] r'
infinitely less probable than the other. The most probable 9
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FIG. 2. Verification of ESS for the third- and fourth-order moments of the horizontal EC ihatBesystem.(Diamonds,|; crossesg;
boxes,8.) The best linear fits are also represented. It is observed thgB tbemponent(boxeg deviates significantly from the others,
probably because this component lacks numerical accuiiaéy given by the difference between the color channels with the nearest
wavelengths Each data point corresponds to a fixed value,dfom 4 to 64 pixels. Although not shown here, the vertical EC gives an
equally good fit.
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FIG. 3. ESS coefficients(p,2) for the RGB(left) and thel a8 (right) chromatic systems, and the horizontal E@mbols as in Figs. 1
and 2. The comparison with the log-Poisson model predictiaa described in Sec. )Ms also represented for each component. RGB
system:Br=0.45, B5=0.45, andBg=0.46; | a8 system.3,=0.50, 8,=0.50, andB;=0.73.

where the parameters andD.. can be expressed in terms of using e St=[L/r]9 P=. It follows that T,=—Ap+(d

the SS exponent, and the modulation parametgrby (for —D..)(1—8P). The ESS exponents are then calculated using
details, se¢13]) p(p,2)=1,/7, and the definitions ofA andD.., Eq. (10);
they are given by
— T2 p 1— ﬁp
A=— — _
-B’ p(PA=r——F - (13
-5 -8 (1-pp

It is remarkable that the ESS exponents depend only on the
modulation paramete8. Besides, using Eq6) one sees that
the set of SS exponentg’s can be computed with only two
parametergnamely, 8 and 7,). The validity of the model
can be tested by fitting the ESS exponemtp,2) with Eq.

Here d is the dimensionality of the systemd=2 for our (13) The agreement between model and data for the two
images. When a noninfinitesimal change in scale is considspromatic systems is shown in Fig. 3.

ered, this formula leads to a log-Poisson distribution for the 14 ~onclide this section. let us notice that E9). allows
multiplicative process, . The probability distribution of ;s {5 compute the distribution af,, from the distributions

Dm__(l—,B)z' (10

Ly Pay (@), IS given by of the EC’s at the scalds andr, by deconvolution(Notice
that this deconvolution problem is numerically ill-posed. As
=g L]A a consequence, the distribution af, so obtained is less
Pu (a):e*SrLE ig( a—pB" = ) (11) precise than the one inferred by fitting the moments of the
" n=o n! r EC.) Two examples of these distributions are shown in Fig.

4, together with the log-Poisson distributipg. (11)]. No-
wheres,| = (d—D..)In(L/r) is the average number of modu- tice that a log-Poisson distribution becomes eventually log-
lations between the two scales. Notice that this distributior’ormal. The reason is that the infinitely divisible character of
depends only on the ratio between the two scales. This modeélrL » expressed in Eq8), implies that Inx, is the sum of an
has been used previously to describe turbulent fi@¥$and  infinite number of independent random variables. Provided
gray-scale natural imagé$2,13. that the Qispersion of that sum is small compqrgd with its

It is now easy to compute the SS exponengsfrom Eqs. ~ mean, this process will get closer to normal. This is not seen

(7) and Egs(5) it follows that(aP, )=[r/L]%. The moments in Fig. 4 because at the two considered scales the average
of @,, can be computed using E€L1) as number of transitions is rather small. This is a manifestation

of the fact that natural images present far-from-Gaussian be-

havior.
n

= S
(af)=e S Tgre

=0 N!

L1]aP

r V. GEOMETRY OF CHROMATIC COMPONENTS: THE

MULTIFRACTAL REPRESENTATION

L 14p—(d=D..)(1-P)

r

12 The anomalous scaling laws for the moments of the chro-
matic EC’s can be explained on the basidamfal anomalous
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FIG. 4. Experimental distribution&liamonds of In «,_ for (a) the horizontal red EC antb) the horizontall EC; r=4 pixels,L=64

pixels. Both distributions are far from Gaussian, but very close to a Poisson distribution with the appropriate pafanostes The
average number of transitiong fnodulation$ for both processes is the sanse: (d—D..)In(L/r)=2.77. This number is rather small to yield
a Gaussian behavior.

scaling exponents. We define thege measuréEM) for a  cal one of multifractality. It is a well-known fadtl6] that
given chromatic component of a square of sideentered D(h) is the Legendre transform of, and vice versa, that is,
around a poink, w(B,(x)), as

D(h)= infp{ph+d— rp}
(B, (X))=r2e.(x),

(16)
(inf stands for the infimum; her@=2). This allows not only
the computation of the singularity spectrum from the statis-
so the EC is just a comparison between the EM of a squarical data, but also the determination of the range of observed
and its standard ared. The convenience of the definition of local singularitiesh. In the log-Poisson model, the whole
the EM with respect to that of the EC is given by the fact thatsingularity spectrum is determined by only two parameters.

the EM isadditive if, for instance, a square is split in several For instance, these can be choseBasdr,, and so it reads
pieces, the EM of the square is the sum of the EM's of it5[27,13

parts. It is natural to ask whether the EM of a square shows
a local power-law scaling as

14

h— —2 h— —2
- D(h)=d+—2 Ll P 175
(B (X)) = a(x)r"0+2, (15 (M =dt ™ g i s
- . . (1-p)?
whereh(x) is the local scaling exponent of a chromatic com-
ponent at the poink. A negative value oh(x) means that

the gradient of the contrast possesses a singularity and 't iS remarkable that according to EQ.7), the fractal dimen-

its numerical value characterizes the type of the singularitySions of the components;, in a log-Poisson SS are non-

If h(X)>0, the gradient is continuous &t if h(x)>1, it is trivial; moreover, the observed \./alues.have a continuous

. ] e range. On the other hand, the singularity spectrum can be
differentiable; etc. The expgneh(x) will be referred to as 1 ore compactly expressed in terms of the free param@ters
the singularity exponent at (understanding that positive andD., defined in Eq(10) as
values are a measure of the degree of “regulantyX mea-
sure verifying Eq(15) is said to bemultifractal. The reason D(h)=D,+(d=D,)w(h)[1—=Inw(h)], (18
for this name is that any image with a multifractal measure
can be decomposed in s which will be observed to where w(h)=—(h+A)/{(d—D.)In[1-(A/d-D.)]}, a lin-
have nontrivial fractal dimensions. For each chromatic comear function ofh. The fractal component with smallest expo-
ponent,F,, is the set of points with the same exponbnand  nent, F.., is called themost singular manifoldMSM). It
will be referred to as thdéractal componenbf exponenth.
The fractal dimensionof each set will be denoted &3(h)

turns out that— A is the exponent characterizing the MSM
(F.=F_,) andD.,.=D(—A) is its dimensior{12]. For ex-

and this function is called thseingularity spectruni16] of

the multifractal.

ample, for a log-Poisson model witl=0.5 and 7,=
—0.25 (which are close to the values experimentally ob-
The characterization of a multifractal system by means oferved in our data sebne obtains that =0.5, D..=1.0.
its fractal components has been shown to be a powerful tool Let us remark that\ andD.. can be chosen as the two

in multiscaling systemg30,13. In fact, there exists a strong free parameters of the modealee Eq(10)]. This means that
link between the statistical property of SS and the geometrithe fractal dimension and the singularity exponent of the
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FIG. 5. Gray-level representations of the RGB sysfeap) and the associated MSM(bottom on Park2 image. The MSM's were taken
as the sets of points having exponént —0.5+0.1. The blue component has significantly less contrast than the others, which makes it
difficult or even impossible to detect some of its edges. The MSM's of all members in the RGB system are, however, very similar.

MSM determine all the multifractal properties. This fact = Comparison of the MSM’s of the two chromatic systems,
stresses the relevance of this particular set of pixels and suRGB andl a3, shows that they have qualitatively different
gests that it may contain enough information to reconstrucgeometrical contents. Figures 5 and 6 exemplify the question
the whole imagé28]. on a representative image.

There are several ways of computing explicitly the local (i) The RGB systens highly geometrically redundant.
exponentsh(x) at a given pixel(which in turn gives the Simple visual inspection of the gray-level representations of
fractal componenis The most convenient method, from the the three chromatic variabléfrst row of Fig. § shows three
numerical point of view, is that of th@avelet transfornfsee ~ Very similar scenes. This fact is confirmed by the multireso-
[29,18,13). It is based on the convolution of the EM density ution analysis(second row of Fig. 5 To characterize this
with an appropriate functlonlf(x), the wavelet, which is geomgtrlcal redund’ancy, we mea;ured the rglatlve density of
resized using a scale variahleto focus the convenient de- the different MSM’s and of their intersection across the
tails at each scale. We thus define the wavelet projectloP"IVhOIe ensemble. The values obtained are red MSM: 29.95%;

green MSM: 29.89%; blue MSM: 23.75%. The relative den-

S|ty of the intersection of the three sets is 19.60%. This
means that the intersection contains 65.44% of the red MSM,
65.57% of the green MSM, and 82.53% of the blue MSM, so

T‘I’d’u(x f dy|VC|(y)‘If (X y) (19 it is clear that the three MSM’s share a significant amount of
geometrical content. In other words: the luminosity edges

whereW (x)=(1/r2) W (x/r). It can be proverd30] that the typically occur simultaneously in all three chromatic compo-

EM verifies the multifractal scaling, E4L5), if and only if ~ Nents in this representation. _ _

(i) The laeB systemhas significant geometrical differ-
ences among its chromatic variables. There are very well
defined borders that are shared by all the variables; however,
R . several geometrical structures are apparent only in one of the
whereh(x) is the same exponent as in EG5) anda(x) is  three chromatic components of the image. It seems that this
a suitable function. This multiresolution method allows for arepresentation could enhance the separation of different
very good discrimination of the sef,; once they are ob- types of objects attending to their color distribution. This
tained, their irregulaffractal) nature is clear by simple visual result seems very appealing. We computed again the densi-
inspection. ties of the different setéeach MSM and the intersection of

Applying the theory to the data, using the previously com-the thre¢ across the whole ensemble of images. The values
puted values ofr, and 8 (Fig. 3), it is obtained that the are the following:I MSM: 40.96%; @« MSM: 45.30%; B
MSM has a dimensio®..,~ 1, which makes plausible that it MSM: 44.65%. The set resulting from the intersection of the
consists of segments of curves. Visual inspection of this sdhree has a density of 13.93%, which means that it contains
(Figs. 5 and B reveals that it is rather close to the edges34.01% of thd MSM, 30.75% of thew MSM, and 31.20%
present in the chromatic components. of the 8 MSM. In this sense, these chromatic variables pos-

T(I,d,u(i) at the poin& and the scale as

T du(X) = a(x)r"®, (20)
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FIG. 6. Gray-level representations of the8 system(top) and the associated MSMi®ottom of the Park2 image. The MSM’s were
taken as the sets of points having exponkrt—0.5+0.1. The 8 component appears rather saturated. Although the most important
transitions are present in the three chromatic variables, there is a significant amount of structure detected by only one of the three, reducing
the geometrical redundancy.

sess less geometrical redundancy than those in the RGB syl$-has no actual units, but depending on the bésiH the
tem. This is explained by the fact that there are sharp edgdegarithm a unit name is usually given. Fo=2, which we
which belong just to one of the spaces and not to the othewill use, it is expressed imits. For discrete variables this
two, in contrast with the situation of the RGB system. quantity is always a finite, positive number, which is maxi-

The inspection of these results reveals two interesting feamum for uniformly distributed variables. For continuous
tures: first, the MSM'’s associated to theB system are variables it does not even need to be defined, and can have a
denser than those of the RGB system. This is mainly causegositive or negative value. For this reason, when a discreti-
by the logarithmic transformation from RGB ta3, which  zation of a continuous variable is considered, the discretiza-
increases the contrast on average and so enhances detalisn range is very relevant. It can be provéske, for in-
Second, for théa 8 system, the ratio between the number of stance, [31]) that for discretized variables the entropy
pixels in the intersection and in each of the MSM’s is lessrepresents an optimal bound for the average amount of digits
than half of the same ratio in the RGB system. This make$o be used in the encoding of events describecKby
more evident the appearance of different geometrical struc- Given two random variablesX and Y, with marginal
tures. The higher degree of independence inlthe system  probability distributiongx(x) andpy(y) and joint probabil-
is rather natural because of their construction: they are decoity distribution pyy(X,y), we define themutual information
related variablegsee[21]). betweenX andY, lyy, as

X,
VI. INFORMATION CONTENT |XY:J' dxf dy prer(X.y)10G, P?;)( 3(’) - @

The classification of the points in the images according PxUOPYY
their multifractal structure has revealed significative differ-|t js expressed in the same units as the entropy. It can be
ences between the RGB and thegs schemes. Although the proved that it is always a positive quantity which only van-
geometrical coincidences and the separation of features seqhes wherp,(X,y) = px(X) py(Y), SO in a sense it is a mea-
very informative, it is convenient to have a more quantitativesure of the statistical independence of the varialesd.

criterion than the rather coarse density estimation. In particum fact, it gives the amount of information shared by the two
lar, it would be desirable to characterize the amount of ingriables:

formation conveyed by the MSM’s and the degree of redun-
dancy among them. This characterization can be done by Ixy=Hx—Hyy=Hy—Hyx, (23
using the concepts of entropy and mutual information.

Given a random variabl& with a probability distribution ~whereHyy is the conditional entropy, defined as
px(X), its entropy(or total information) Hy is defined as

HleEJ dpr(Y)(‘f dXPx|Y(X|Y)|09be|Y(X|Y) ,
Hx:_f dX px(X)logppx(X). (21 (24)
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andPX|Y(X|Y):PXY(ny)/pY(y) is the distribution ofX con- TABLE I. Entropies and mutual informations in the RGB sys-
ditioned byY. The conditional entropy is the average of thetem, arranged in columns. The first three columns represent the
entropy ofX for fixed values ofY. It is the part of the entropy entropies of the red, green, and blue variables. The next three col-
of X which is independent of: 0<Hyy<Hx and Hyy umns represent the mutual information between the different pairs.
—H, only if X is independent o¥. Thus, the mutual infor- The last two co_Iumns rgpresent the two definitions we have given
mation, according to Eq23), measures the amount of bits of for the mutual mforme_mon of the three varlgbles altogether_. The
X which can be predicted by the knowledge Yoaind vice rows refer to the §pat|al extent of the sampllng: the who_le image
versa. (top)., the |ntersectlon of the t.hree MSMisniddle), and the inter-
The definition of mutual information can be extended tos‘eCtlon of the three first manifoldottom; here,h, = iO'Si 0.1.
more than two variables, although not in a unique way. wehl the data are expressed in bits. The bit depthVoE|(x) for each

will work with the information shared by three variablis component was taken to be eight bits, which means that it has been
Y, andz, which can be expressed as discretized in =256 values; thus the maximal possible value of

each entropy is 8.

Ixyz=Ixy=Ixyz; (25
‘ HR HG HB IGB lRB IRG KRGB IRGB

Whg';(e:,XY\? 'Séhe I‘e‘vera%;d trr?“t“!a' !:‘f.ormat'on tbztw@.é” Whole image 4.77 4.78 4.13 0.94 0.90 2.76 3.76 0.84
T kol s oy F- 33 534 489 130 125 32 dg4 11
Pxy|z\ X, .

that of Eq.(23). The last term is the amount of information Fi, 492 4.93 473 086 08l 278 372 0.73
betweenX andY which is not shared by, while the differ-

ence gives the information shared by the three variablesnan that of the whole image, while for the following mani-
Contrary to the mutual information of two variablé§d.  fo|q this entropic increase is not present. Besides, comparing
(23)], which is always positivelxyz can be negative. This he entropy of the second MSM with that of the whole im-
happens when fixing the value @fcauses the relation be- 446 it is seen that they are similagain, the lack of contrast
tweenX andY to become less random, increasing their staj, the plue component causes some of the pixels in the MSM
tistical dependence. As an extreme case we consldeY 14 pe detected as belonging to the second MSMvas also

+Z, with Z independent off. Fixing Z, the quantitylxyiz  observed that less singular fractal components have the same
takes its maximum valuély, andlyyz=—Hyxx. On the  gnopy as the whole image. The conclusion that can be ex-
other hand, a positive value bfyindicates that fixing’the  tracted from this is that the number of frequent values that

Othl(tarcxob\éasri?/lgz ?ﬁ;ome more independant. [VC|(>Z) takes on the MSM is greater than on the whole
image. On the other hand, sampling on the second M&M
in any of the next fractal componeits equivalent to sam-
pling on the complete scene. It is then concluded that this
that is, the difference between the two mutual informations ig/ariable distinguishes the MSM from the other fractal com-
independent of which variable is kept fixed. An explicitly ponents by having a greater number of useful bits on it. This
symmetric expression is given by system exhibits a rather large amount of mutual information
between pairs of variables, which is maximal for the pair
Iy 7= Ixy+Ixzt+ lyz—Kxyz, (27 Red-Greenthose with the most similar wavelength ranges
for the three geometrical sets. Related to this, one also ob-
where serves that gg=Igg=Igrgg, that is, the information shared
by the pairs GB or RB is close to the information common to
vaz:J de dyf dZPXYZ(Xuy-Z)IOQbM- the three variables. This shows again the strong dependence
px(X)py(Y)pz(2) between the red and green components. Notice that the mu-
(28)  tual information also follows the same changes shown by the
. . . . entropies over the geometrical sets.
Wfa. now stazt the information gnaIyS|s of the multifractal (ii) | systemTable Il summarizes the results obtained
denS|tles|VC|(x) of the chromatic components, when the o this system. We first notice that all the entropies are
pointx runs across particular geometrical sets. We are intertarger than those of the RGB components. It also exhibits an
ested in measuring entropies and mutual information among
the three variables of each chromatic system, at the same TABLE Il. Entropies and mutual information for tHex3 sys-
pixel x, averaging over all the pixels of the image ensemblefem. arranged in columns. The first three columns represent the
For each chromatic system we consider three differengntropies for the, «, and g variables, and the following are ar-
geometrical sets. The first is obtained from the whole im_ranged as those of Table I. The rows refer to the same geometrical
ages; the second contains the pixels common to the MSM’ ets as in Table I. All the data are expresseq in bits. The bit depth
of the three components; and the third is given by the pixeld®” €¢h component was taken to be eight bits.
common to the second MSM'’s. The comparison between
these sets will give valuable knowledge about the distribu-

|XYz:|Yz_|Yz\x:|xz_|xz\Y, (26)

Hl Ha HB I|Lr I|B laB Kl(xﬁ I|aﬁ

tion of information in the image. Whole image 6.45 5.84 5.25 0.15 0.13 0.10 0.670.29
We obtained the following results. F.. 6.48 6.04 5.60 0.29 0.24 0.19 1.7:0.99
(i) RGB systemThe results are summarized in Table I. It F 6.44 585 522 0.19 0.15 0.13 0.970.50

is observed that the entropic content of the MSM is larget
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entropic increment of the MSM with respect to the whole most informative pixels in the images. To study this issue,
images, although it is smaller than for the RGB systemwe have computed several information quantities: the total
Again the entropies defined over the second MSM are rathezntropy, the mutual information between pairs of channels,
similar to those of the whole image. The two-variable mutualand the information shared by the three channels of a given
information is rather limited, which is expected because ofsystem. This analysis reveals that the MSM contains the
the decorrelation achieved by this system. Contrary to thenost informative pixels in the image, for the six considered
RGB system, now,;<0, which yields an increase of the channels. There are differences between the RGB and the
mutual information between two variables when the third isl a8 systems. All the measured quantities show that the first
known. Let us emphasize that on the pixels common to thés highly redundant, in that a given channel contains a large
three MSM's, the value of,,z is still more negative: this amount of information about the others. On the contrary, the
implies that on this set the degree of dependence of the gralecorrelated system has eliminated some redundancy. How-
dients is larger than over the whole image. Given that in thiver, there is still a substantial amount of mutual informa-
system the three two-variable mutual informations are rathetion, which is maximal over the MSM.

close, the argument applies to the three possible pairs. The results found in this work also contribute to confirm
the robustness of the multiscaling properties of natural im-
VII. CONCLUSIONS ages. These properties are not a peculiarity of monochro-

. . matic images but they are also present in color images, re-
In this work we have addressed the question of whethegarqless of the chromatic system used.

color-natural scenes exhibit non-Gaussian statistics related 10 \ve want to emphasize that the multiscaling properties

the gradient of the chromatic components. This was done fogiscussed here give priori information about what a natural
each of the three chromatic channels of two different chro1mage is, reducing the entropy of the ensemble of natural
matic systems: the cone responses RGB and their decorrgeenes. This could be useful for explaining the processing of
lated versiorl 8 [21]. The main conclusion is that natural color images in the early stages of the visual pathway. The
color images exhibit multiscaling effects similar to mono- existence of such a rich structure suggests that the second-
chromatic image$12,13, for both chromatic systems. In order statistics alone do not contain all visually significant
particular, it has been checked that the multiscaling statisticahformation. Instead, as it was already found for gray-scale
properties are very well described in the context of mU'“P'"images[ZO], color processing filters will be fully defined

cative processes, with just two free parameters. once the non-Gaussian properties described here are in-
An explicit decomposition of the images in their fractal ¢|yded.

components was also done using a wavelet technique. The

most important of these componefghich we have called

the most singular manifoldMSM)] is given by the obvious ACKNOWLEDGMENTS
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