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Multiscaling and information content of natural color images
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Naive scale invariance is not a true property of natural images. Natural monochrome images possess a much
richer geometrical structure, which is particularly well described in terms of multiscaling relations. This means
that the pixels of a given image can be decomposed into sets, the fractal components of the image, with
well-defined scaling exponents@Turiel and Parga, Neural Comput.12, 763 ~2000!#. Here it is shown that
hyperspectral representations of natural scenes also exhibit multiscaling properties, observing the same kind of
behavior. A precise measure of the informational relevance of the fractal components is also given, and it is
shown that there are important differences between the intrinsically redundant red-green-blue system and the
decorrelated one defined in Ruderman, Cronin, and Chiao@J. Opt. Soc. Am. A15, 2036~1998!#.

PACS number~s!: 42.66.Ne, 87.19.Dd, 47.53.1n, 47.54.1r
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I. INTRODUCTION

The description of the early stages of the visual pathw
in mammalians and other animals must be addressed
the knowledge of the properties of the signal that this sys
is intended to encode: natural images@1–4#. These are very
complex objects, and truly random from the point of view
the observer. However, natural images are structured, hi
redundant objects, a fact that becomes clear, for insta
when the luminosity changes smoothly over the reflect
surfaces. This redundancy, which should be used asa priori
knowledge about the signal, is useful to develop optim
coding strategies, which are learned by the sensory syst

Finding structure in natural scenes is not a trivial proble
and the description of the relevant regularities requires
of all to define the variables where these regularities mani
themselves. One such variable is the contrast, and the a
sis of its second-order statistics@5,6# reveals that there is no
characteristic scale in the problem@6#. Following this fact,
several authors@3,4,7,8# have described natural image stat
tics in terms of a Gaussian with a 1/f 2 power spectrum. This
was then used to predict the receptive fields of cells in
early visual system. However, it is clear that a Gaussian
tistics leaves aside a large amount of qualitatively import
structure. This is noticed, for instance, in that once the im
is whitened~i.e., the correlations between pairs of pixels a
eliminated!, the scene can still be recognized thanks to
fact that the borders of the objects are still present@9#. An-
other piece of evidence against the Gaussian statistics is
presence of long tails in the contrast distribution@10,11#.

As it was emphasized in@11–13#, a better understandin
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of the statistics of images should be achieved to define w
a natural scene is. This implies the necessity of looking
more regularities. As it was noticed in@12,14#, there is fur-
ther structure that can be detected in the statistics of a q
tity related to local changes in contrast. The study of
properties revealed the existence of multiscaling proper
in natural scenes: images do not have uniform scale pro
ties, but they can be decomposed in sets of pixels~fractals!
such that only those in a given set have similar scale pr
erties. The scaling properties associated with the power s
trum are usually related to the fractal character of imag
The new scaling laws observed in monochrome natural
ages refer to a more detailed structure that reveals that
ages are not simple fractals~for this notion see, e.g.,@15#!
but rather multifractal objects~a mathematical concept tha
was introduced in@16#! which can be split into different frac
tal sets that transform differently under changes in the sc
The hierarchical structure of the fractal components has b
proposed as a natural way of classifying the information c
tent of the visual scenes@13#. Image structure in scale-spac
has been considered by several authors, although from a
ferent point of view@17,18#.

Interestingly enough, these properties can be explai
@14,12# by means of a simple model, which obtains the s
tistics of the contrast gradient at a scaler in terms of an
independent multiplicative process applied to the statistic
the contrast gradient at a larger scaleL. This multiplicative
stochastic variable follows a log-Poisson distribution. T
events it generates give a statistical description of the w
that contrast differences present at the scaleL are seen at the
finer scaler. In particular, a sharp change~modulation! of the
contrast gradient is represented in terms of a larger inten
of the multiplicative event. The robustness of the multisc
properties of natural images has been thoroughly tested
recent work that showed that a wide variety of different im
age ensembles exhibits a multiplicative process of the l
Poisson type@19#.
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PRE 62 1139MULTISCALING AND INFORMATION CONTENT OF . . .
The power of the statistical regularities of images detec
with these techniques can be appreciated in that they
enough to predict an intrinsic wavelet filter in natural scen
@20#. In fact, the non-Gaussian statistics implied by the lo
Poisson process uniquely define a wavelet filter that dec
poses the image in a set of statistically independent res
tion levels, and although it still leaves some spat
dependences, these are extremely short-ranged@20#. This has
to be contrasted with the ambiguities that the use of only
power spectrum still leaves in the definition of an optim
filter @3#.

It is then relevant to ask whether similar non-Gauss
statistics is also present in color images. In this case, h
ever, one is faced not only with the types of geometri
redundancy mentioned above for monochrome ima
@5,6,12#, but also with chromatic redundancy@7,21#. The in-
formation conveyed by color images is obviously very
dundant, particularly for those spectral channels with
closest wavelengths. One expects that each channel beh
statistically much like a single monochrome channel, w
similar geometrical redundancies and strong mutual dep
dences. Taking as a starting point the usual three-cha
red-green-blue~RGB! representation~that we will hereafter
call thechromatic systemRGB! according to the human sen
sory receptor classes, Rudermanet al. @21# developed a chro-
matic system of three new variables~called lab). As de-
fined, this chromatic system decorrelates the three signa
each point in the image. Thus, these signals define a m
compact codification of the RGB images. Moreover, t
variables these authors obtain are reminiscent of the c
matic channels of human color vision.

The aim of this work is to explain the chromatic system
both from the geometrical meaning of the fractal compone
of color images and from the evaluation of the informati
conveyed by each chromatic channel over the fractal com
nents. We will present the following.

~i! Verification of the log-Poisson multiplicative proce
for each channel of the two chromatic systems@that is, the
standard red-green-blue and the decorrelating one (lab)#
@21#.

~ii ! Performance of a multifractal decomposition of im
ages for the two chromatic systems and a classification of
resulting fractal components, emphasizing the importa
and the interpretation of the most relevant of them, the m
singular manifold~MSM!.

~iii ! Determination of the information content and the m
tual information among the three components of a giv
chromatic system, for different sets of pixels~whole image,
MSM, and second MSM!.

The paper is structured as follows. In Sec. II the inst
mental and processing methods used in the elaboratio
this work are summarized. The concepts of multiscaling la
and their experimental validations are given in Sec. III. S
tion IV explains the log-Poisson model which is used
describe the non-Gaussian image statistics. In Sec. V
statistical results are interpreted in geometrical terms, and
decomposition of the images into their fractal component
shown. In addition, the differences between the two ch
matic systems are also observed and explained. In Sec.
precise measure of the information content and mutual in
mation of the variables are given and interpreted. Finally,
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main conclusions are presented in Sec. VII.

II. METHODS

The data-gathering methods were as in@21#. Briefly, spec-
tral images were captured using an Electrim EDC-1000
camera with a resolution of 1923165~horizontal3 vertical!
eight-bit pixels. Light reaching the CCD array was pass
through a variable interference filter with a wavelength ran
of 400–740 nm of bandpass typically 15 nm. In each ima
43 successive images were taken of each scene at 7–8
intervals from 403 to 719 nm. Each pixel subtended a re
angle of 0.04730.055 degrees~horizontal 3 vertical!. No
corrections for optical or CCD-element spatial filtering we
made; however, the estimated dark noise was subtra
from each CCD image on a pixel-by-pixel basis. In attem
ing to select a diversity of typical foliage-dominated scen
images were collected in several locations around Baltimo
Maryland ~temperate woodland! and Brisbane, Australia
~sclerophyll forest, subtropical rainforest, and mangro
swamp!. Selected scenes contained numerous natural
jects, including leaf foliage, bark, rocks, herbs, streams, b
soil, etc. In one corner of each imaged scene small refl
tance standards were placed for calibration purposes: a S
tralon 100% diffuse reflectance material~Labsphere! and a
nominally 3% spectrally flat diffuse reflector~MacBeth!.

We collected images of 12 such natural scenes, and
ther analyzed the central 1283128 pixel region. Each of the
(12831283125196 608) pixels was converted to three th
oretical cone responses as(lQ(l)R(l)I (l), whereQ(l) is
the Stockman-MacLeod-Johnson cone fundamental@22# for
the given cone type,R(l) is the measured image reflectan
data,I (l) is the standard illuminant D65~which is meant to
mimic a daylight spectrum@22,23#!, and the sum is over
wavelengths represented in the spectrum. Our results de
only very weakly on the choice of illuminant, so long as it
broadband. This procedure provides the cone response
L(xW ), M (xW ), andS(xW ), proportional to the number of quant
absorbed in anL, M, or Scone at spatial locationxW within the
image. The raw reflectance data for the 12 images are a
able via anonymous ftp at ftp://sloan.salk.edu/pub/ruderm
hyperspectral/.

We will make use of two differentchromatic systemsof
cone response variables to represent each image, the
system and thelab system. The RGB system is formed b
the raw L ~red!, M ~green!, and S ~blue! responses and is
intended to be an unprocessed representation of the im
The lab system is formed by the variables obtained in@21#,
which is defined as follows:

l 5
1

A3
~ ln L1 ln M1 ln S!2 l 0 ,

a5
1

A6
~ ln L1 ln M22 lnS!2a0 , ~1!

b5
1

A2
~ ln L2 ln M !2b0 ,

wherel 0 , a0, andb0 are appropriate constants verifying th
the average of each variable over each image is equal to z
These variables are decorrelated, that is, the average o
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1140 PRE 62TURIEL, PARGA, RUDERMAN, AND CRONIN
product of any two different variables vanishes~see@21#!.
This decorrelation property is a weak kind of independe
~if the variables are independent, then they are decorrela!.

III. STATISTICS OF IMAGES: MULTISCALING

It is believed that natural images behave like ‘‘fracta
objects: they do not possess a scale of reference and the
self-similar @6#, each small portion of them behaving in th
same way as the whole image~in a statistical sense!. How-
ever, the kind of self-similar behavior shown by the pow
spectrum is insufficient to provide a detailed description
the local structure of natural scenes@10–13#. This is because
it assigns the same scaling exponent to every image pixe
obtain a better description of the image, it is necessary
define a variable with a local scope, able to detect its lo
features. The hope is that a variable like this could ass
distinct self-similar behaviors to different pixels, which
turn could be used to detect and classify its local featu
Examples of this approach can be found in@12,13,19#, where
dealing with gray-scale images a whole hierarchy of ima
features, from sharp edges to textures, has been put in
respondence with local scaling exponents.

In this work the approach is extended to color imag
The existence of a hierarchy is explored and explic
checked for all the components of the chromatic syste
presented in the preceding section. In analogy with the v
ables defined in@12,13#, given any of the chromatic compo
nents presented in Sec. II, theedge content~EC! of this com-
ponent at the pointxW and at the scaler, e r(xW ), is defined as

e r~xW !5
1

r 2EBr (x
W )

dxW8u¹Cu~xW8!, ~2!

whereC(xW ) denotes the selected chromatic component~e.g.,
R, G, B, l, a, or b). The bidimensional integral is define
over Br(xW ), which represents a square of linear sizer cen-
tered atxW . We will often use one-dimensional surrogates
the EC, which are statistically less demanding. These
defined as integrals along a direction given by a vectorrW of
length r:

e rW~xW !5
1

r E2r /2

r /2

dsU]C

]s
S xW1s

rW

r
D U. ~3!

As noted before, these variables compute the average o
scaler of a quantity that compares two neighboring points
is then clear that even its marginal distribution contains
formation about the local structure of the image. This is
the case for the more usual average over the same sca
the chromatic components themselves.

We now introduce the important concepts ofself-
similarity ~SS! andextended self-similarity~ESS! ~see@12#!.
Given a random variablee r defined on a local area of sizer,
we would say that this variable has SS if its statistical m
ments of orderp obey a power law with exponenttp :

^e r
p&5apr tp, ~4!
e
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where ap is a geometrical factor. The angular bracke

^•••& represent the average over all the pointsxW belonging to
each image for all the images in the ensemble conside
Sincetp is an arbitrary function ofp, this is a more genera
type of scaling than the one observed in the power spectr
The simplest possible system exhibiting SS is that in wh
tp}p. In that case, the dependence on the scale paramer
is trivial: it simply implies that the moments of the norma
ized variablee r /^e r& do not depend onr. The most interest-
ing cases are those in whichtpÞt1p, and this deviation is
known asanomalous scaling.

The concept of ESS requires that the moments verif
weaker identity:

^e r
p&5A~p,q!^e r

q&r(p,q). ~5!

Any moment of orderq could be used~providedtqÞ0 if SS
holds!; we will always use the momentq52. If e r has SS, it
also has ESS, and the relation between the exponentstp and
r(p,2) is

r~p,2!5
tp

t2
. ~6!

We can now verify if SS and ESS hold for color-natur
images using the dataset presented in Sec. II. For this
pose we have used the variablese rW(xW ) @Eq. ~3!# taking rW in
both the horizontal and the vertical directions. The numeri
analysis was done over the six EC variables built on the
chromatic components RGB andlab. The scaler was taken
small compared with the total size of the image (r<64 pix-
els! andp was taken up top510. It is remarkable that both
SS and ESS hold for all of these cases. The test for ES
presented for the horizontal EC of the chromatic compone
RGB in Fig. 1 and for the chromatic componentslab in Fig.
2. The ESS exponentsr(p,2) are shown in Fig. 3, again fo
the three components of the two chromatic systems.

The exponentstp do not behave linearly withp. This
proves that natural scenes possess nontrivial scaling la
and that more complex regularities are present in the im
ensemble. The next section describes a model that pre
the correct exponents and consequently contains those r
larities. After that, the statistical approach followed here w
be related with a local approach, this will allow us to pred
geometrical properties of natural images from the knowled
of tp .

IV. MULTIPLICATIVE PROCESSES: LOG-POISSON
MODEL

The data presented in the preceding section show
ESS holds for the six chromatic components discussed in
work. We show here that a very simple model, based o
log-Poissonmultiplicative process@24–26,12#, is able to fit
these data. The existence of such a process means tha
EC at a scaler is obtained from the EC at a greater scaleL
by multiplying it by a random variablea rL :

e r5a rLeL , ~7!
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FIG. 1. Verification of ESS for the third- and fourth-order moments of the horizontal EC in the RGB chromatic system~diamonds, red;
crosses, green; boxes, blue!. The best linear fits are also represented. Each data point corresponds to a fixed value ofr, from 4 to 64 pixels.
Although not shown here, the vertical EC gives an equally good fit.
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where a rL is independent ofeL . The random factorsa rL
define the multiplicative process, and for any intermedi
scaler 8, r ,r 8,L, the following relation must hold:

a rL5a rr 8a r 8L . ~8!

This implies that the process can be infinitely split into ma
intermediate stages, and it is thus said to be infinitely div
ible. The factora rL takes account of the consecutive tran
tions of the EC from a large scale in the image to sma
ones. Knowing the process and the probability distribution
the EC at the largest scaleL, the probability distribution of
the EC at any other scaler ,L can be computed.

Under an infinitesimal change in the scale~when the EC
at scaler is generated from the EC at scaler 1dr), the
log-Poisson model is a binomial distribution with one eve
infinitely less probable than the other. The most proba
e

y
-

-
r
f

t
le

event corresponds to smooth transitions in the contrast~e.g.,
the surface of an object!, whereas the infinitesimally rare
event indicates a sharp transition~e.g., anedge!. The sharp-
ness of the transition is observed as a finite change of
value ofa rL under an infinitesimal change in the scaler; we
will characterize this finite change by means of a modulat
parameter, 0<b<1, which measures the fraction of th
value of a rL which remains after that transition. More pre
cisely, thea rL ’s are obtained by

a r ,r 1dr5H 11D
dr

r
with probability 12@d2D`#

dr

r

bS 11D
dr

r D with probability @d2D`#
dr

r
,

~9!
,
rest
an
FIG. 2. Verification of ESS for the third- and fourth-order moments of the horizontal EC in thelab system.~Diamonds,l; crosses,a;
boxes,b.! The best linear fits are also represented. It is observed that theb component~boxes! deviates significantly from the others
probably because this component lacks numerical accuracy~it is given by the difference between the color channels with the nea
wavelengths!. Each data point corresponds to a fixed value ofr, from 4 to 64 pixels. Although not shown here, the vertical EC gives
equally good fit.
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FIG. 3. ESS coefficientsr(p,2) for the RGB~left! and thelab ~right! chromatic systems, and the horizontal EC~symbols as in Figs. 1
and 2!. The comparison with the log-Poisson model prediction~as described in Sec. IV! is also represented for each component. RG
system:bR50.45, bG50.45, andbB50.46; lab system:b l50.50, ba50.50, andbb50.73.
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where the parametersD andD` can be expressed in terms
the SS exponentt2 and the modulation parameterb by ~for
details, see@13#!

D52
t2

12b
,

d2D`52
t2

~12b!2
. ~10!

Here d is the dimensionality of the system;d52 for our
images. When a noninfinitesimal change in scale is con
ered, this formula leads to a log-Poisson distribution for
multiplicative processa rL . The probability distribution of
a rL , rarL

(a), is given by

rarL
~a!5e2srL (

n50

` srL
n

n!
dS a2bnFL

r GDD , ~11!

wheresrL5(d2D`)ln(L/r) is the average number of modu
lations between the two scales. Notice that this distribut
depends only on the ratio between the two scales. This m
has been used previously to describe turbulent flows@27# and
gray-scale natural images@12,13#.

It is now easy to compute the SS exponentstp : from Eqs.
~7! and Eqs.~5! it follows that^a rL

p &5@r /L#tp. The moments
of a rL can be computed using Eq.~11! as

^a rL
p &5e2srL (

n50

` srL
n

n!
bnpFL

r GDp

5FL

r GDp2(d2D`)(12bp)

~12!
d-
e

n
el

using e2srL5@L/r #d2D`. It follows that tp52Dp1(d
2D`)(12bp). The ESS exponents are then calculated us
r(p,2)5tp /t2 and the definitions ofD and D` , Eq. ~10!;
they are given by

r~p,2!5
p

12b
2

12bp

~12b!2
. ~13!

It is remarkable that the ESS exponents depend only on
modulation parameterb. Besides, using Eq.~6! one sees tha
the set of SS exponentstp’s can be computed with only two
parameters~namely,b and t2). The validity of the model
can be tested by fitting the ESS exponentsr(p,2) with Eq.
~13!. The agreement between model and data for the
chromatic systems is shown in Fig. 3.

To conclude this section, let us notice that Eq.~7! allows
us to compute the distribution ofa rL from the distributions
of the EC’s at the scalesL and r, by deconvolution.~Notice
that this deconvolution problem is numerically ill-posed. A
a consequence, the distribution ofa rL so obtained is less
precise than the one inferred by fitting the moments of
EC.! Two examples of these distributions are shown in F
4, together with the log-Poisson distribution@Eq. ~11!#. No-
tice that a log-Poisson distribution becomes eventually l
normal. The reason is that the infinitely divisible character
a rL , expressed in Eq.~8!, implies that lnarL is the sum of an
infinite number of independent random variables. Provid
that the dispersion of that sum is small compared with
mean, this process will get closer to normal. This is not s
in Fig. 4 because at the two considered scales the ave
number of transitions is rather small. This is a manifestat
of the fact that natural images present far-from-Gaussian
havior.

V. GEOMETRY OF CHROMATIC COMPONENTS: THE
MULTIFRACTAL REPRESENTATION

The anomalous scaling laws for the moments of the ch
matic EC’s can be explained on the basis oflocal anomalous
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FIG. 4. Experimental distributions~diamonds! of ln arL for ~a! the horizontal red EC and~b! the horizontall EC; r 54 pixels,L564
pixels. Both distributions are far from Gaussian, but very close to a Poisson distribution with the appropriate parameters~crosses!. The
average number of transitions (b modulations! for both processes is the same:s5(d2D`)ln(L/r)52.77. This number is rather small to yiel
a Gaussian behavior.
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scaling exponents. We define theedge measure~EM! for a
given chromatic component of a square of sider centered
around a pointxW , m„Br(xW )…, as

m„Br~xW !…5r 2e r~xW !, ~14!

so the EC is just a comparison between the EM of a squ
and its standard arear 2. The convenience of the definition o
the EM with respect to that of the EC is given by the fact th
the EM isadditive: if, for instance, a square is split in sever
pieces, the EM of the square is the sum of the EM’s of
parts. It is natural to ask whether the EM of a square sho
a local power-law scaling as

m„Br~xW !…5a~xW !r h(xW )12, ~15!

whereh(xW ) is the local scaling exponent of a chromatic co
ponent at the pointxW . A negative value ofh(xW ) means that
the gradient of the contrast possesses a singularity atxW , and
its numerical value characterizes the type of the singular
If h(xW ).0, the gradient is continuous atxW ; if h(xW ).1, it is
differentiable; etc. The exponenth(xW ) will be referred to as
the singularity exponent atxW ~understanding that positiv
values are a measure of the degree of ‘‘regularity’’!. A mea-
sure verifying Eq.~15! is said to bemultifractal. The reason
for this name is that any image with a multifractal meas
can be decomposed in setsFh which will be observed to
have nontrivial fractal dimensions. For each chromatic co
ponent,Fh is the set of points with the same exponenth, and
will be referred to as thefractal componentof exponenth.
The fractal dimensionof each set will be denoted asD(h)
and this function is called thesingularity spectrum@16# of
the multifractal.

The characterization of a multifractal system by means
its fractal components has been shown to be a powerful
in multiscaling systems@30,13#. In fact, there exists a stron
link between the statistical property of SS and the geome
re

t

s
s

-

y.

e

-

f
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cal one of multifractality. It is a well-known fact@16# that
D(h) is the Legendre transform oftp and vice versa, that is

D~h!5 infp $ph1d2tp% ~16!

~inf stands for the infimum; hered52). This allows not only
the computation of the singularity spectrum from the sta
tical data, but also the determination of the range of obser
local singularitiesh. In the log-Poisson model, the whol
singularity spectrum is determined by only two paramete
For instance, these can be chosen asb andt2, and so it reads
@27,13#

D~h!5d1
t2

~12b!2
2

h2
t2

12b

ln b F 12 lnS h2
t2

12b

t2lnb

~12b!2

D G .

~17!

It is remarkable that according to Eq.~17!, the fractal dimen-
sions of the componentsFh in a log-Poisson SS are non
trivial; moreover, the observed values have a continu
range. On the other hand, the singularity spectrum can
more compactly expressed in terms of the free parameteD
andD` defined in Eq.~10! as

D~h!5D`1~d2D`!w~h!@12 ln w~h!#, ~18!

where v(h)52(h1D)/$(d2D`)ln@12(D/d2D`)#%, a lin-
ear function ofh. The fractal component with smallest exp
nent, F` , is called themost singular manifold~MSM!. It
turns out that2D is the exponent characterizing the MS
(F`[F2D) andD`[D(2D) is its dimension@12#. For ex-
ample, for a log-Poisson model withb50.5 and t25
20.25 ~which are close to the values experimentally o
served in our data set! one obtains thatD50.5, D`51.0.

Let us remark thatD and D` can be chosen as the tw
free parameters of the model@see Eq.~10!#. This means that
the fractal dimension and the singularity exponent of
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FIG. 5. Gray-level representations of the RGB system~top! and the associated MSM’s~bottom! on Park2 image. The MSM’s were take
as the sets of points having exponenth520.560.1. The blue component has significantly less contrast than the others, which ma
difficult or even impossible to detect some of its edges. The MSM’s of all members in the RGB system are, however, very simila
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MSM determine all the multifractal properties. This fa
stresses the relevance of this particular set of pixels and
gests that it may contain enough information to reconstr
the whole image@28#.

There are several ways of computing explicitly the loc
exponentsh(xW ) at a given pixel~which in turn gives the
fractal components!. The most convenient method, from th
numerical point of view, is that of thewavelet transform~see
@29,18,13#!. It is based on the convolution of the EM densi
with an appropriate functionC(xW ), the wavelet, which is
resized using a scale variabler to focus the convenient de
tails at each scale. We thus define the wavelet projec
TC

r dm(xW ) at the pointxW and the scaler as

TC
r dm~xW !5E dyW u¹Cu~yW !C r~xW2yW !, ~19!

whereC r(xW )[(1/r 2)C(xW /r ). It can be proven@30# that the
EM verifies the multifractal scaling, Eq.~15!, if and only if

TC
r dm~xW !5ā~xW !r h(xW ), ~20!

whereh(xW ) is the same exponent as in Eq.~15! and ā(xW ) is
a suitable function. This multiresolution method allows fo
very good discrimination of the setsFh ; once they are ob-
tained, their irregular~fractal! nature is clear by simple visua
inspection.

Applying the theory to the data, using the previously co
puted values oft2 and b ~Fig. 3!, it is obtained that the
MSM has a dimensionD`'1, which makes plausible that
consists of segments of curves. Visual inspection of this
~Figs. 5 and 6! reveals that it is rather close to the edg
present in the chromatic components.
g-
ct

l

n
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Comparison of the MSM’s of the two chromatic system
RGB andlab, shows that they have qualitatively differen
geometrical contents. Figures 5 and 6 exemplify the ques
on a representative image.

~i! The RGB systemis highly geometrically redundant
Simple visual inspection of the gray-level representations
the three chromatic variables~first row of Fig. 5! shows three
very similar scenes. This fact is confirmed by the multires
lution analysis~second row of Fig. 5!. To characterize this
geometrical redundancy, we measured the relative densit
the different MSM’s and of their intersection across t
whole ensemble. The values obtained are red MSM: 29.9
green MSM: 29.89%; blue MSM: 23.75%. The relative de
sity of the intersection of the three sets is 19.60%. T
means that the intersection contains 65.44% of the red MS
65.57% of the green MSM, and 82.53% of the blue MSM,
it is clear that the three MSM’s share a significant amoun
geometrical content. In other words: the luminosity edg
typically occur simultaneously in all three chromatic comp
nents in this representation.

~ii ! The lab systemhas significant geometrical differ
ences among its chromatic variables. There are very w
defined borders that are shared by all the variables; howe
several geometrical structures are apparent only in one o
three chromatic components of the image. It seems that
representation could enhance the separation of diffe
types of objects attending to their color distribution. Th
result seems very appealing. We computed again the de
ties of the different sets~each MSM and the intersection o
the three! across the whole ensemble of images. The val
are the following: l MSM: 40.96%; a MSM: 45.30%; b
MSM: 44.65%. The set resulting from the intersection of t
three has a density of 13.93%, which means that it conta
34.01% of thel MSM, 30.75% of thea MSM, and 31.20%
of the b MSM. In this sense, these chromatic variables p
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FIG. 6. Gray-level representations of thelab system~top! and the associated MSM’s~bottom! of the Park2 image. The MSM’s were
taken as the sets of points having exponenth520.560.1. Theb component appears rather saturated. Although the most impo
transitions are present in the three chromatic variables, there is a significant amount of structure detected by only one of the three
the geometrical redundancy.
s
g

th

fe

s

et
o
s
ke
ru

co

in
r

e
iv
ic
in
un

xi-
s
ve a
eti-
iza-

y
igits

be
n-
-

o

sess less geometrical redundancy than those in the RGB
tem. This is explained by the fact that there are sharp ed
which belong just to one of the spaces and not to the o
two, in contrast with the situation of the RGB system.

The inspection of these results reveals two interesting
tures: first, the MSM’s associated to thelab system are
denser than those of the RGB system. This is mainly cau
by the logarithmic transformation from RGB tolab, which
increases the contrast on average and so enhances d
Second, for thelab system, the ratio between the number
pixels in the intersection and in each of the MSM’s is le
than half of the same ratio in the RGB system. This ma
more evident the appearance of different geometrical st
tures. The higher degree of independence in thelab system
is rather natural because of their construction: they are de
related variables~see@21#!.

VI. INFORMATION CONTENT

The classification of the points in the images accord
their multifractal structure has revealed significative diffe
ences between the RGB and thelab schemes. Although the
geometrical coincidences and the separation of features s
very informative, it is convenient to have a more quantitat
criterion than the rather coarse density estimation. In part
lar, it would be desirable to characterize the amount of
formation conveyed by the MSM’s and the degree of red
dancy among them. This characterization can be done
using the concepts of entropy and mutual information.

Given a random variableX with a probability distribution
rX(x), its entropy~or total information! HX is defined as

HX52E dx rX~x!logbrX~x!. ~21!
ys-
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It has no actual units, but depending on the basisb of the
logarithm a unit name is usually given. Forb52, which we
will use, it is expressed inbits. For discrete variables this
quantity is always a finite, positive number, which is ma
mum for uniformly distributed variables. For continuou
variables it does not even need to be defined, and can ha
positive or negative value. For this reason, when a discr
zation of a continuous variable is considered, the discret
tion range is very relevant. It can be proved~see, for in-
stance, @31#! that for discretized variables the entrop
represents an optimal bound for the average amount of d
to be used in the encoding of events described byX.

Given two random variables,X and Y, with marginal
probability distributionsrX(x) andrY(y) and joint probabil-
ity distribution rXY(x,y), we define themutual information
betweenX andY, I XY , as

I XY5E dxE dy rXY~x,y!logb

rXY~x,y!

rX~x!rY~y!
. ~22!

It is expressed in the same units as the entropy. It can
proved that it is always a positive quantity which only va
ishes whenrXY(x,y)5rX(x)rY(y), so in a sense it is a mea
sure of the statistical independence of the variablesX andY.
In fact, it gives the amount of information shared by the tw
variables:

I XY5HX2HXuY5HY2HYuX , ~23!

whereHXuY is the conditional entropy, defined as

HXuY[E dy rY~y!S 2E dx rXuY~xuy!logbrXuY~xuy! D ,

~24!
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andrXuY(xuy)5rXY(x,y)/rY(y) is the distribution ofX con-
ditioned byY. The conditional entropy is the average of t
entropy ofX for fixed values ofY. It is the part of the entropy
of X which is independent ofY: 0,HXuY<HX and HXuY
5HX only if X is independent ofY. Thus, the mutual infor-
mation, according to Eq.~23!, measures the amount of bits o
X which can be predicted by the knowledge ofY and vice
versa.

The definition of mutual information can be extended
more than two variables, although not in a unique way.
will work with the information shared by three variablesX,
Y, andZ, which can be expressed as

I XYZ5I XY2I XYuZ , ~25!

where I XYuZ is the averaged mutual information betweenX
and Y for fixed values ofZ @that is, it is computed using
rXYuZ(x,yuz)#. The interpretation of this quantity is similar t
that of Eq.~23!. The last term is the amount of informatio
betweenX andY which is not shared byZ, while the differ-
ence gives the information shared by the three variab
Contrary to the mutual information of two variables@Eq.
~23!#, which is always positive,I XYZ can be negative. This
happens when fixing the value ofZ causes the relation be
tweenX andY to become less random, increasing their s
tistical dependence. As an extreme case we considerX5Y
1Z, with Z independent ofY. Fixing Z, the quantityI XYuZ
takes its maximum valueHY , and I XYZ52HYuX . On the
other hand, a positive value ofI XYZ indicates that fixingZ the
other two variables become more independent.

It can be proved that

I XYZ5I YZ2I YZuX5I XZ2I XZuY , ~26!

that is, the difference between the two mutual information
independent of which variable is kept fixed. An explicit
symmetric expression is given by

I XYZ5I XY1I XZ1I YZ2KXYZ, ~27!

where

KXYZ5E dxE dyE dzrXYZ~x,y,z!logb

rXYZ~x,y,z!

rX~x!rY~y!rZ~z!
.

~28!

We now start the information analysis of the multifrac
densitiesu¹Cu(xW ) of the chromatic components, when th
point xW runs across particular geometrical sets. We are in
ested in measuring entropies and mutual information am
the three variables of each chromatic system, at the s
pixel xW , averaging over all the pixels of the image ensemb

For each chromatic system we consider three differ
geometrical sets. The first is obtained from the whole i
ages; the second contains the pixels common to the MS
of the three components; and the third is given by the pix
common to the second MSM’s. The comparison betwe
these sets will give valuable knowledge about the distri
tion of information in the image.

We obtained the following results.
~i! RGB system.The results are summarized in Table I.

is observed that the entropic content of the MSM is lar
e

s.

-
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than that of the whole image, while for the following man
fold this entropic increase is not present. Besides, compa
the entropy of the second MSM with that of the whole im
age, it is seen that they are similar~again, the lack of contras
in the blue component causes some of the pixels in the M
to be detected as belonging to the second MSM!. It was also
observed that less singular fractal components have the s
entropy as the whole image. The conclusion that can be
tracted from this is that the number of frequent values t
u¹Cu(xW ) takes on the MSM is greater than on the who
image. On the other hand, sampling on the second MSM~or
in any of the next fractal components! is equivalent to sam-
pling on the complete scene. It is then concluded that
variable distinguishes the MSM from the other fractal co
ponents by having a greater number of useful bits on it. T
system exhibits a rather large amount of mutual informat
between pairs of variables, which is maximal for the p
Red-Green~those with the most similar wavelength range!
for the three geometrical sets. Related to this, one also
serves thatI GB.I RB.I RGB, that is, the information share
by the pairs GB or RB is close to the information common
the three variables. This shows again the strong depend
between the red and green components. Notice that the
tual information also follows the same changes shown by
entropies over the geometrical sets.

~ii ! lab system.Table II summarizes the results obtaine
for this system. We first notice that all the entropies a
larger than those of the RGB components. It also exhibits

TABLE I. Entropies and mutual informations in the RGB sy
tem, arranged in columns. The first three columns represent
entropies of the red, green, and blue variables. The next three
umns represent the mutual information between the different pa
The last two columns represent the two definitions we have gi
for the mutual information of the three variables altogether. T
rows refer to the spatial extent of the sampling: the whole ima
~top!, the intersection of the three MSM’s~middle!, and the inter-
section of the three first manifolds~bottom!; here,h1520.360.1.

All the data are expressed in bits. The bit depth ofu¹Cu(xW ) for each
component was taken to be eight bits, which means that it has b
discretized in 28[256 values; thus the maximal possible value
each entropy is 8.

HR HG HB I GB I RB I RG KRGB I RGB

Whole image 4.77 4.78 4.13 0.94 0.90 2.76 3.76 0.
F` 5.35 5.34 4.69 1.30 1.25 3.22 4.64 1.1
Fh1

4.92 4.93 4.73 0.86 0.81 2.78 3.72 0.7

TABLE II. Entropies and mutual information for thelab sys-
tem, arranged in columns. The first three columns represent
entropies for thel, a, and b variables, and the following are ar
ranged as those of Table I. The rows refer to the same geomet
sets as in Table I. All the data are expressed in bits. The bit de
for each component was taken to be eight bits.

Hl Ha Hb I la I lb I ab Klab I lab

Whole image 6.45 5.84 5.25 0.15 0.13 0.10 0.6720.29
F` 6.48 6.04 5.60 0.29 0.24 0.19 1.7120.99
Fh1

6.44 5.85 5.22 0.19 0.15 0.13 0.9720.50



le
m
th
ua

o
th
e
i

th

gr
h
th

he
d
f

ro
or
l

o-
n
ic
li

al
T

th
a
c
n

re

th

ue,
tal

els,
ven
the
ed
the
rst
rge
the
ow-
a-

m
im-
ro-
re-

ies
l
ral

g of
he

ond-
nt
ale

in-

a-
ce

N-
m
as

PRE 62 1147MULTISCALING AND INFORMATION CONTENT OF . . .
entropic increment of the MSM with respect to the who
images, although it is smaller than for the RGB syste
Again the entropies defined over the second MSM are ra
similar to those of the whole image. The two-variable mut
information is rather limited, which is expected because
the decorrelation achieved by this system. Contrary to
RGB system, nowI lab,0, which yields an increase of th
mutual information between two variables when the third
known. Let us emphasize that on the pixels common to
three MSM’s, the value ofI lab is still more negative: this
implies that on this set the degree of dependence of the
dients is larger than over the whole image. Given that in t
system the three two-variable mutual informations are ra
close, the argument applies to the three possible pairs.

VII. CONCLUSIONS

In this work we have addressed the question of whet
color-natural scenes exhibit non-Gaussian statistics relate
the gradient of the chromatic components. This was done
each of the three chromatic channels of two different ch
matic systems: the cone responses RGB and their dec
lated versionlab @21#. The main conclusion is that natura
color images exhibit multiscaling effects similar to mon
chromatic images@12,13#, for both chromatic systems. I
particular, it has been checked that the multiscaling statist
properties are very well described in the context of multip
cative processes, with just two free parameters.

An explicit decomposition of the images in their fract
components was also done using a wavelet technique.
most important of these components@which we have called
the most singular manifold~MSM!# is given by the obvious
contours in each chromatic channel. It was found that
RGB and thelab systems have rather different geometric
structure. While the first exhibits a great deal of redundan
in the sense that the fractal components of the three chan
are quite similar, the decorrelated system extracts diffe
features in the different channels.

In addition to this, this fractal structure helps to detect
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most informative pixels in the images. To study this iss
we have computed several information quantities: the to
entropy, the mutual information between pairs of chann
and the information shared by the three channels of a gi
system. This analysis reveals that the MSM contains
most informative pixels in the image, for the six consider
channels. There are differences between the RGB and
lab systems. All the measured quantities show that the fi
is highly redundant, in that a given channel contains a la
amount of information about the others. On the contrary,
decorrelated system has eliminated some redundancy. H
ever, there is still a substantial amount of mutual inform
tion, which is maximal over the MSM.

The results found in this work also contribute to confir
the robustness of the multiscaling properties of natural
ages. These properties are not a peculiarity of monoch
matic images but they are also present in color images,
gardless of the chromatic system used.

We want to emphasize that the multiscaling propert
discussed here givea priori information about what a natura
image is, reducing the entropy of the ensemble of natu
scenes. This could be useful for explaining the processin
color images in the early stages of the visual pathway. T
existence of such a rich structure suggests that the sec
order statistics alone do not contain all visually significa
information. Instead, as it was already found for gray-sc
images@20#, color processing filters will be fully defined
once the non-Gaussian properties described here are
cluded.
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